
HANDOUT VISUAL COMMUNICATION PAGE 1

10. Every time
you make a
change to your
code, save the
file in Atom
(Command-S),
and then
reload the page
(Command-R)
in the browser
to see the
effects of these
changes.

PREP TIME (10 mins.)
1. Download the html-css-exercise compressed
folder from Canvas > Files > Course Material. Move the
compressed folder from Downloads to your Desktop
(for easy access).
2. VERY IMPORTANT!! Unzip the folder by double-
clicking. Remove the compressed folder.
3. Review the contents of the exercise folder: it includes
an index.html document, an images folder and a folder
for your CSS, which will specify the presentation
aspects of your page. You can find text files for today’s
exercise in the Resources folder: captions and story,
plus a CSS reset.
4. Go to atom.io and download the code-editing
software we will be using. After de-compressing
this folder, you will see the Atom application. For
convenience, move it to your Applications folder.
5 . Launch Atom. Close any windows that appear by
clicking in the small “X” on the right of the tabs.

6. Under the Atom menu at top left, pull down to
“Preferences.” Click the Editor tab, and scroll down
to “Soft Wrap.” Click the box so that a blue check is
showing. This will allow you to see all your text within
the application window. You can now close the Settings
tab at the top of the window.
7. Go to File > Open, and navigate to the html-css-
exercise folder. You should see the files in the Project
sidebar.
MAKE SURE you have NOT opened the zip file!
8. Make the Atom program take up about half your
screen, and launch a browser (like Chrome) on the
other side.
9. Click on the index.html file in Atom’s project sidebar,
and drag the tab from Atom to the tab on your browser.
The index.html file will display there.
The configuration should look like what you see below:

HTML/CSS EXERCISE
Follow these steps to create an HTML page based on the Tattoo Picture Story.

Complete the exercise, compress (zip) your folder and submit to Canvas.

HANDOUT VISUAL COMMUNICATION PAGE 2

ADDING YOUR CONTENT
1. Within the <title> tag, add your name and “C226”.
<title>Ernie Pyle C226</title>

2. Inside the <h1> tag, write your name.
<h1>Ernie Pyle</h1>

3. Inside the <h2> tag, write this headline, replacing
“Add your headline here.”
<h2>Welcome to my life, tattoo</h2>

4. Inside the first <p> tag, add your name instead of
“Yourname Here*”.
<p>Words and pictures by Ernie Pyle</p>

5. Open the “Resources” folder and copy (Command-C)
all the story text for the Tattoo story.
6. Back in index.html, swipe over the line of text
in the second <p> tag, and paste your copied text
(Command-V).
7. Each of the paragraphs in the story should be
contained inside a <p> tag. Add opening and closing
paragraph tags to each of your paragraphs.
<p>Tattooing is an art that has been
practiced for a very long time. While the
meaning and purpose differentiates across
cultures, tattoos in the United States
have recently gravitated from a form of
rebellion to a form of self-expression.</p>

8. We will now add an image. Images are added
to HTML via the tag. This is an empty tag,
meaning it cannot contain content. It calls in the
image to the page as an attribute, telling the browser
specifically which image we want to display. Return to
the first line after the <main> tag (line 14) and hit a
Return.

9. On Line 14, add the first image:

This tells the browser to find the first tattoo image
inside the images folder and display it.
10. Next we’ll add a caption to this image. For this, we
will wrap our tag with a <figure> tag — it will
open before the tag and close after it. Before the
<figure> closes, we will add a <figcaption> tag, which
will contain the text of the caption.
Here is how this chunk of code will look:
<figure>

 <figcaption>Write the text for your
 caption here.</figcaption>
</figure>

11. At the bottom of your HTML file, find the <footer>
tag. It includes two <p> tags: one to allow a user to
email you, the second to allow the user to see our class
website. For these to actually do something when they
are clicked on, we will add an <a> tag (a hyperlink)
within the <p> tag. Of course, we will have to tell the
browser where we want to go, too. We do this through
an href attribute inside the <a> tag.
<p>Visit our <a href="https://sites.
mediaschool.indiana.edu/mschc226-stlayton-
fall20">class website!</p>

12. You will build the hyperlink to your email in a
similar way, but instead of telling the browser to go
to a website, you will be telling it to access your mail
program.
<p><a href="mailto:youremailhere@indiana.
edu">Contact me!</p>

*This story is not by Ernie Pyle, actually, but by Cam Pokrifcak, a C226 student in 2017.

HANDOUT VISUAL COMMUNICATION PAGE 3

1. Go to the style.css file aside the css folder. It already
includes a reset, which strips away most browser
defaults from the presentation. After the code ends, on
line 48, hit a return a couple of times. We will add our
custom CSS styles here.
2. Start by changing the background color of the page.
To do this, we will apply a background-color rule to the
<html> element.
html {
 background-color: peachpuff;
}

3. Reload your page. You should see the color of the
background change from white to … peachpuff.
4. Next we will add some
structure. We will set a width
for the <main> element, as
well as adding a margin rule to
keep it centered in the browser
window.
main {
 width: 800px;
 margin: 0 auto;
}

5. So that we can read the text
easier, we will add some space
beneath each paragraph, using
a variation of the margin rule.
p {
 margin-bottom: 16px;
}

Notice that your photograph is
too big! It is displaying on the
page at its actual pixel size —
the size, in other words, of the
image in pixels.

6. We will next write a rule so that the element
within the <figure> is the same width as the main
(800px). Because the <figure> is within the <main>,
the <figure> element is actually 800 pixels wide — but
the , by default, overflows this limit. This makes
the image appear too large on our page. We will use a
percentage to change this.
figure img {
 width: 100%;
}

The code above has a descendant selector — it states
that any img element that is contained within a figure
will be shown at the same width (100%) as the figure.

STYLING YOUR CONTENT
Before we begin adding CSS code, we must first make sure the CSS file and the HTML file are correctly linked. In Line
6 of index.html, you will find the link tag that connects these two documents.
<link rel="stylesheet" href="css/styles.css">

This link is directing the browser to search inside the css folder for a file called styles.
css. But the file that is inside your css folder is called style.css! In order to correctly
link the two files, the names must match exactly. Change your HTML code so that the
file you are linking to is called style.css.

<link rel="stylesheet" href="css/style.css">

Save your index.html file and reload your page in the browser window. You should notice some changes — all the type
is the same size and the space between paragraphs is gone. Don’t worry — this is actually an indication that the code is
working! You are now ready to start adding some of your own style to the design.

HANDOUT VISUAL COMMUNICATION PAGE 4

7. Let’s try changing our typography to better reflect our
content. To do this, we will be using Google fonts. Open a
new tab on the browser side of your screen, and go to
https://fonts.google.com/
8. Scroll through the available font families — there are
more than 900 of them! Find one you like for the body
copy, and a more expressive one for your headline.

9. Click the typeface to review it, and if you would like
to use it, click the blue “Select this font” button. It is
now added to your collection in the sidebar at the right
of the screen.

10. When you have chosen
two fonts — one for body,
one for display — click the
“Embed” button at the top
of the sidebar. This panel
includes two vital pieces of
info for your code.
11. Swipe over an copy the
<link> tag and paste it into
your index.html document,
just after the <title> tag
(line 6).
12. Back in Google Fonts,
copy the font-family rule for
the body copy font.

13. In your CSS file, add a rule for the <body> tag.
Paste the copied rule inside the curly braces to make
all the text on your page appear in this font. As well, I
have added two additional declarations for the body
rule: changing the size of the text to 18 pixels (the
default is 16) and opening up the line-height — the CSS
equivalent of leading — loosening it from the default
(which is 1 — note there is not a unit for this).
body {
 font-family: ‘Roboto Slab’, serif;
 font-size: 18px;
 line-height: 1.5;
}

14. Repeat this process for your headline. This time,
create a multiple selector for both the <h1> and <h2>
elements, with the selectors separated by commas. I
have also added a (doubled) size using em units.
h1,h2 {
 font-family: 'Abril Fatface',cursive;
 font-size: 2em;
}

15. The <h2> element should appear as larger text,
since it spans the actual story. We’ll add a rule to make
this the case. Make sure this rule appears after the
h1,h2 rule we just wrote — in CSS, order is important,
and the last declared style is what the browser will use.
h2 {
 font-size: 3em;
}

16. Next, we will center-align some of our content. We
will write a rule for the header, footer and h2 elements
to center them within the layout.
header, footer, h2 {
 text-align: center;
}

17. I’d like to differentiate the caption and byline so
that they will not be confused with story text. The
caption has a different HTML tag — figcaption — so
writing a rule for that is fairly straightforward:
figcaption {
 font-style: italic;
}

The byline, though, is a <p> tag, so I need a way to
single it out from my other paragraphs. You can do this
in HTML/CSS by giving the element a class.
18. Return to the index.html document and add a
class attribute to the opening <p> tag for the byline.
<p class="byline">Words and pictures by
Cam Pokrifcak</p>

You can name the class whatever you want, but do not
use spaces or capital letters.
19. Back in CSS, create a rule for all paragraphs that
have a class of “byline.” You reference this with a dot (.)
in your selector. No space between the p and the dot!
p.byline {
 text-align: center;
 font-weight: bold;
}

20. Finally, we will change the color of our hyperlinks,
which for this page appear inside the footer element
at the bottom. We’ll write a pair of rules, changing the
appearance of any hyperlinks in normal state and, by
using the :hover pseudoclass, darkening the red color
when the user hovers over the link.
a {
 color: red;
}
a:hover {
 color: darkred;
}

HANDOUT VISUAL COMMUNICATION PAGE 5

SUBMITTING THIS EXERCISE
Since we have been saving all our work as we add code, we can now simply quit the Atom program. Our last step to
submit this exercise to Canvas will be to compress our folder, in the same way that we compressed our packaged
folder for the Magazine Design project.
Locate your folder for this project, and right-click. Select “Compress” from the options that pop up. Make absolutely
sure that you are submitting your code and not the basic code we started this exercise with! This is one reason why it’s
a good idea to trash the original compressed folder once you have de-compressed it.
Canvas only allows you to submit files rather than folders, which is why compressing is necessary.

