
YOUR PAGES ACCOUNT
1. You will have to have an active Pages
account to publish your work. If you think you
might not have one, check by going to one.iu
(https://one.iu.edu/) and searching for “View
Accounts.” You should see “Pagesy” listed on
your active accounts.
2. If you don’t yet have an account, click the
“Create Computing Account” button, and on
the next page, click the radio button next to
“Pages.” Then click “Create Account.”
Your account will be active within the next
24 hours.

PREP TIME
1. Download the C226 Website project compressed folder from Canvas > Files > Course Material or Canvas > Files
> Assignments. Move the compressed folder to your Desktop (for easy access). Unzip the folder by double-clicking.
Trash the .zip file.
2. Preview the contents of the folder: it includes an index.html document, a css folder that has in it a file called style.
css that will specify the presentation aspects of your page. There are also two empty folders: images (you will put your
Picture Story images in this folder) and resources (where you can put your text, among other things).
3. Copy the images you want to use from your Picture Story and Magazine Design (the JPEG spreads) to the folder’s
images folder. Make sure the file names include the .jpg extension, and that you do not have any capital letters or
spaces in the name. Instead of spaces, you can use hyphens, like this: ernie-pyle.jpg
4. Open your story in Word (or whichever program you used to write it) and copy all the text.
5. Launch Atom (or your code editor). Go to File > Open, and navigate to the c226-website folder. You should see the
files in the Project sidebar. Close any other window (hover over the right edge of the tabs and click the “x”).
QUICK TIP! Under the Atom menu, choose “Preferences,” and click the “Editor” tab. Scroll down until you see “Soft
Wrap,” and check that box. This will keep all your text visible on the screen (i.e., no horizontal scrolling).
6. Make Atom take up about half your
screen, and launch a browser (like
Chrome) on the other side. Click on the
index.html file in Atom’s project sidebar,
and drag the tab from Atom to the tab
on your browser. The index.html file will
display there. The configuration should
look like this:
Every time you make a change to
your code, save the file in Atom
(Command-S), and reload the page
(Command-R) in the browser to see
the effects of these changes.

HANDOUT VISUAL COMMUNICATION PAGE 1

YOUR WEBSITE
With this handout, you will follow the steps to add your C226 content, from your three

previous projects, to a basic HTML page, and use CSS styles to create colors, typography
and structure. You will publish your site using IU’s Pages service.

https://one.iu.edu/

HANDOUT VISUAL COMMUNICATION PAGE 2

ADDING YOUR CONTENT
1. Within the <title> tag, add your name.
<title>Ernie Pyle</title>

2. Inside the <h1> tag (on Line 10), write “C226 / ” and your name.
<h1>C226 / Ernie Pyle</h1>

3. On Line 21, write a brief summary of our class. Remember — you will be publishing this site, so anyone on the Web
will be able to see it. Make sure the entire page includes real text.
4. Inside the <h2> tag on Line 31, write your headline, replacing “Add your headline here.” Use the same one you
used for your Picture Story post, or come up with a new one.
<h2>Welcome to my life, tattoo</h2>

5. Inside the first <p> tag, add your name instead of “Yourname Here”.
<p>Words and pictures by Ernie Pyle</p>

6. Swipe over the line of text in the second <p> tag, and paste your copied text (Command-V) from Step 4 on the
previous page.
7. Each of the paragraphs in the story should be contained inside a <p> tag. Add opening and closing paragraph tags
to each of your paragraphs until you reach the end of your story.
<p>Tattooing is an art that has been practiced for a very long time. While the meaning
and purpose differentiates across cultures, tattoos in the United States have recently
gravitated from a form of rebellion to a form of self-expression.</p>

8. We will now add an image. Images are added to HTML via the tag. This is an empty tag, meaning it cannot
contain content. It calls in the image to the page as an attribute, telling the browser specifically which image you
want to display. Return to the first line after the <main> tag (line 20) and replace the img attribute you see there with
your image — which should be in the images folder. Be sure to have the correct spelling of your image:
 (the file name will be the file name of your image, of course.)
This tells the browser to find the image inside the images folder and display it.
9. Next we’ll add a caption to this image. For this, notice that our tag is within a <figure> tag — the <figure>
will open before the tag and close after it. Before the <figure> closes, but after the element, we will add
a <figcaption> tag, which will contain the text of the caption. Make sure your caption is your real caption from your
Picture Story! Here is how this chunk of code will look:
<figure>
	
	 <figcaption>Write the text for your caption here.</figcaption>
</figure>

10. Use the model in the previous step to add one or two additional images (depending on the length of your story).
11. Save and reload your page on the browser side — you should now see your content.
NOTE: If you see a broken link instead of your image, double-check that you have spelled the filename correctly,
and specified the path for the browser to locate the image.

12. Go to our class website — https://sites.mediaschool.indiana.edu/mschc226-stlayton-fall21/ — and find
your Picture Story.

13. Copy the link from the URL window.
14. Return to Atom, and paste the copied link into your href (replacing the hashtag symbol) for the hyperlink at the
end of the first section element.
<p>Click <a href="http://sites.mediaschool.indiana.edu/mschc226-stlayton-
fall20/2020/10/01/explore-the-markets-of-paris/" target="_blank">here to see my
Picture Story project.</p>

https://sites.mediaschool.indiana.edu/mschc226-stlayton-fall21/

HANDOUT VISUAL COMMUNICATION PAGE 3

15. Move to the second section tag in your HTML code, the one that begins the Video description. Repeat the
steps from the previous page where you added your own content, changing headlines and adding real text for the
paragraph(s).
16. The template includes a sample video (actually one of our lectures), but of course you will want your own Video
project to appear here. For this, we will bring in your Video from Kaltura by using an <iframe> tag.
a. GO to https://iu.mediaspace.kaltura.com/my-media and click on your video.
b. CLICK the “Share” button below the video,
and click the “Embed” button.
c. COPY the <iframe> tag that appears there.
d. PASTE your copied <iframe> tag over the
<iframe> tag you see in the HTML code. (The
<iframe> tag has lots of characters, so it will be
quite lengthy.)
17. Save and reload. You should now see your
video in place of our placeholder video.
18. For the last of the three <section> elements, you will be adding your magazine spreads. The code is already
prepared for this — and will even display your spreads side by side thanks to the CSS (once it is correctly linked ...
more on that in the next section of this handout). You can even use the same file names as in my code if you like!
<div class="spreads">

</div>

19. Don’t forget to add real text for this third section, too.
20. At the bottom of your HTML file, find the <footer> tag. It includes two
<p> tags: one to allow a user to email you, the second to allow the user to
see our class website. For these to actually do something when they are
clicked on, we will add an <a> tag within the <p> tag. Of course, we will
have to tell the browser where we want to go, too. We do this through an
href attribute inside the <a> tag.
<p>Visit our <a href="https://sites.mediaschool.indiana.
edu/mschc226-stlayton-fall2020/">class website!</p>

21. You will build the hyperlink to your email in a similar way, but instead
of telling the browser to go to a website, you will be telling it to access your
mail program.
<p>Contact
me!</p>

Our HTML document is mostly complete — you should now be able to save
the file in Atom, and reload the page in your browser to see your content.
Of course, this is part of our DESIGN unit, so we now must move on to
changing the presentation of our page!

https://iu.mediaspace.kaltura.com/my-media

HANDOUT VISUAL COMMUNICATION PAGE 4

STYLING YOUR CONTENT
1. Go to the style.css file aside the css
folder. It already includes a reset, which
strips away most browser defaults from
the presentation. After that chunk of code
ends, on line 48, there are a number of
other style rules written into the document
— but none of these are currently affecting
your page. Why not?
2. Return to the index.html document to
check the link in the <head> … for this
to work, the code needs to exactly match
the file name which it doesn’t. Repair the
code to match the name of the file, save
and reload the page. You should now see
a slight change to your layout. The way to
tell it’s working? The background will be
bright yellow.
3. Start by changing the background color
of the page. To do this, you will apply
a background-color rule to the <html>
element. You can use a saved color name
(like beige), or use RGB or hexadecimal
values for your color.
html {
	 background-color: yellow;
}

For a complete list of saved color names,
go to: https://www.w3schools.com/
colors/colors_names.asp
RECOMMENDED: Open your main
image in Photoshop and see if you can
sample a color from that image to use as
your background color. (It’s also perfectly fine to use
white if you want …
Three ways to make “white”:
background-color: white;
background-color: rgb(255,255,255);
background-color: #FFFFFF;)
4. Reload your page. The color of the background will
change from yellow to … whatever you changed it to.
The CSS file already has some basic structure added
in … controlling the width and margin of the <main>
element, some of the styling of the <nav> (the page
menu), a few declarations for the visual content
(images, figures and iframe) and a few margin/padding
rules.
You may alter these if you like, but your focus for
this project will be on creating customized styles for
typography and display. Note that the CSS has three
different “sections” set apart by commented headings:
structure, typography and visuals.
5. So that we can read the text easier, we will add some
space beneath each paragraph, using a variation of
the margin rule. We will also add a rule so that there

is more space between each line — the equivalent of
leading.
p {
	 margin-bottom: 18px;
	 line-height: 1.3;
}

6. Let’s try customizing our typography to better reflect
our content. We will be using Google fonts. Open a new
tab on the browser side of your screen, and go to https://
fonts.google.com/

7. Scroll through the
available font families. Find
one you like for the body
copy, and another for your
headings. Click a typeface
family to review it, and if
you would like to use one
or more of its styles, click
the blue “Select this style”
button. It is now added
to your collection in the
sidebar at the right of the
screen.

https://www.w3schools.com/colors/colors_names.asp
https://www.w3schools.com/colors/colors_names.asp
https://fonts.google.com/
https://fonts.google.com/

HANDOUT VISUAL COMMUNICATION PAGE 5

8. When you have
chosen two fonts

— one for body, one for
display — make sure the
“View Selected Families”
button is blue at the top
so you can see the sidebar
(left). This panel includes
two vital pieces of code.
9. Swipe over an copy the
<link> tag and paste it into
your index.html document,
just after the <title> tag
(line 6). It’s recommended
to call this in before your
own CSS file.

12. Back in Google Fonts, copy the CSS font-family rule
for the body copy font (i.e. your story text).
13. In your style.css file, add a rule for the <body>
element, within the “structure” section. Paste the
copied font-family rule inside the curly braces so all
the text on your page appears in this font. (The color
rule shown here will make the text easier on the eyes
than black type, and we will make the text a little larger
than the browser default of 16 pixels.)
body {
	 font-family: ‘Roboto Slab’, serif;
	 font-size: 18px;
	 color: #555555;
}

14. Repeat this last step (copy from Google Fonts,
paste into your CSS) for the typeface you want for your
headings. This time, create a rule for the <h1> and
<h2> elements, with selectors separated by commas.
Change the color of the text by adding a color property.
(You can also sample a color from Photoshop for this.)
h1,h2 {
	 font-family: ‘Oswald’, sans-serif;
	 color: darkolivegreen;
}

15. The previous rule was an example of a multiple
selector, but we can also set individual styles for each
of these elements — and we will do so for their size.
Our reset turned all our text the same size, and now,
because of the body rule (step 13), all our type is 18
pixels. But we want our headings to be clearly larger,
so we will use CSS to adjust the size of the h1 and h2
elements, individually. We will use ems as our unit
— essentially, this allows us to specify a value for the
size in comparison to the size the elements would be
without a specific rule:

h1 { font-size: 4em;}

h2 { font-size: 2.5em; }

(Use your own design sensibility to determine the sizes,
of course.)
16. Next, we will center-align some of our content. We
will write a rule for the header, footer and h2 elements
to center them within the layout.
header, footer, h2 {
	 text-align: center;
}

17. We’ll also center the byline, which we can target by
adding, in the index.html file, a class of “byline” to that
<p> element.
<p class="byline">Words and pictures by
Ernie Pyle</p>

We can now reference this particular paragraph in
CSS. The dot between “p” and “byline” means that this
selects every paragraph with a class of “byline.”
This rule centers the text, and also makes it appear in
all caps.
p.byline {
	 text-align: center;
	 text-transform: uppercase;
	 font-weight: bold;
}

18. Finally, we will change the color of our hyperlinks,
both in normal state and when the user hovers over the
link. You can use saved colors, or sample a hexadecimal
color from Photoshop (see Page 6).
a { color: red; }
a:hover {color: darkred;}

On your own:
• Add some style touches to the project descriptions
that begin each section, using this selector:
div.description

(This has already been set up in the HTML.)
• Try using a declaration for the figcaptions, so they
will clearly differentiate from the rest of the text — try
making the bold, or italic, or both, through the font-
weight and font-style properties.
• Try adding a box-shadow beneath the magazine
pages, using the following property:
box-shadow: 4px 4px 4px rgba(0,0,0,.5);

The four values are, in order: horizontal offset (from
left), vertical offset (from top), amount of blur and
color. RGBA color includes an opacity value (between 0
and 1, invisible to opaque) as the last value.

HANDOUT VISUAL COMMUNICATION PAGE 6

SOME NEW THINGS TO TRY
CUSTOM COLORS — You can use any color you
like for web elements — not just those 140 saved
color names. Try opening your image in Photoshop
and sampling one of its colors with the Eyedrop tool.
You can use the rgb values (red, green, blue) or its
hexadecimal value for this. Photoshop’s Color Picker
— double-click the small color square at the bottom
of the tool panel to call it up — will tell you these
values. In the example shown here, the RGB value is
223,221,216 while the hex value is dfddd8. (The hex
value requires a # sign in CSS.)

Here is how you would reference these colors in CSS:
RGB:	 html {background-color:
rgb(223,221,216);}

Hex:	 html {background-color: #dfddd8;}

n TRY: Write a CSS rule for the html element using a
hex value for a color in your main image.

COLOR BOXES — You can use the background-
color property to add a color for the box of an HTML
element. (Remember the CSS Box model — every
HTML element has a box!) We will try it with the
<header> at the top, and the <footer> at the bottom.
header {
	 background-color: rgb(223,221,216);
	 padding: 10px;
	 color: white;
}

This rule would make the background of the header
element a color (our C226 shade of blue), and the
padding is needed to add space between the elements
(the h1 and p) and the edge of the box. Finally, the
white color will affect all the text elements that are
contained within the header — the h1 and p again.

footer {
	 background-color: rgba(0,0,0,.2);
	 padding: 30px;
}
For the footer, I’ve added a little more padding, and
used an rgba color. The “a’ in rgba stands for alpha,
and it is how you can add a color with a reduced opacity
— .2 means 20 percent. An rgb color of (0,0,0) is black,
so this rule will slightly darken the box around the
footer.
n TRY: Write a CSS rule for the html element using a
hex value for a color in your main image.

ADDING IMAGES — We have our main image at the
top of the page, but let’s add a second … and write some
code that would change the size and placement of that
image.
Where you place the image within the HTML does
matter. Go to your index.html document and add a
second image about halfway the story (using your own
image name and caption, of course).
<figure class="left">
	
	 <figcaption>Copy and paste the
	 appropriate caption.</figcaption>
</figure>

When I reload the page, the image will appear where I
placed it, but will take up the full width of the <main>
element, interrupting the text.
Try writing a rule for just this figure … note that in my
HTML code above, I have added a class to the figure
tag. I can reference just this figure — and not the other
one — by using, as my selector, figures that have a class
of “left.”
figure.left {
	 width: 50%;
	 float: left;
	 margin-right: 30px;
	 margin-bottom: 15px;
}

The width rule means that the figure will be just half
the width of its container — the <main> element. The
float rule will bring text from the story adjacent to the
image, and I have used margins to add space between
the figure and the text at its right and bottom.
n TRY: Adding a third image, creating a new class, and
floating it on the right rather than the left.
n TRY: Adjusting the pixel width of the main element
in CSS to see the effect on the layout.

HANDOUT VISUAL COMMUNICATION PAGE 7

PUBLISHING YOUR PAGE
Once you have created your Pages account and it is active, you can upload your files and publish your website. Your
URL will be
http://username.pages.iu.edu
(where “username” is your username).
Once your account is set up and active, you are ready to upload files to the Pages server.

CONNECT TO IU’S VPN
To access the IU pages/Mercury server from off campus, you will need to download and install a VPN client. This is
software that allows you to establish a connection between it and the VPN server, and offers access to VPN services.
1. Go here to download Pulse Secure.
2. Follow the instructions to install and configure Pulse Secure.
3. To connect, click the “connect” button.
4. When prompted, enter “push” for the secondary password. (This is Duo authentication.)
For more information on the IU VPN: https://kb.iu.edu/d/ajrq
For instructions on downloading, installing and using Pulse Secure: https://kb.iu.edu/d/aygt

CONNECT VIA CYBERDUCK
1. Cyberduck is an FTP program and is in the dock of the Macs in Franklin Hall. You can download Cyberduck
yourself from �https://cyberduck.io/
2. Hit Command-N to open a new connection. In the dialog box that drops down, choose “SFTP” in the top dropdown.
3. In the server name field, type
ssh-pages.iu.edu

4. Add your IU username and pass
phrase, and click the “connect” button.
5. Authenticate with your Duo app.
6. Double-click “web” to open that
folder. You can move the relevant files
into this directory, or create a new

folder (c226) if there’s something there already.
NOTE> Adding a “c226” folder will lengthen the URL
to username.pages.iu.edu/c226

UPLOADING FILES
1. Once connected, with a destination folder opened, click the Cog button, and pull down to “Upload.”

2. Select the files and folders you want to upload
from your project folder. Be sure to include your
html document (index.html), your images folder
and your css folder. DO NOT upload the folder
itself, but DO upload its contents.

3. There is a 2 GB limit to the amount of space you
can have on this server, so be sure to only include

the files that are vital to your site, avoiding any large PSDs or
videos, for example.

4. At any time, you can upload additional files, upload newer versions of files that are already there, or delete files —
all from an FTP program like Cyberduck.

https://kb.iu.edu/d/aygt
https://kb.iu.edu/d/aygt#install
https://kb.iu.edu/d/ajrq
https://kb.iu.edu/d/aygt
https://cyberduck.io/

HANDOUT VISUAL COMMUNICATION PAGE 8

TROUBLESHOOTING
Check your URL to make sure that you have successfully uploaded your files and published your site.
• If your IU username is erniepyle, and your files reside at the first level of the “web” folder in your Pages folder,
the url for your site will be:

erniepyle.pages.iu.edu
(note: your name is NOT Ernie Pyle and your username is NOT erniepyle).
• If you created a subdirectory (additional folder) within your “web” folder for your C226 project and named that
folder “c226,” the url for your site will be:

erniepyle.pages.iu.edu/c226

Is something not working correctly? Here are the most common issues:
• Forbidden — can’t see anything but this short message
PROBLEM: Browser is looking for an index.html file at your URL
and not finding one.
PROBABLE CAUSE: Did you upload your entire project folder
rather than its content? If you were to upload the folder called “C226
Website project”, that name would become part of your URL:

erniepyle.pages.iu.edu/C226%20Website%20project
SOLUTION: Re-upload only the files from that folder — index.html, the css folder and the images folder — rather
than the folder itself. You can also simply move the files from inside that folder to the root level of the “web” folder by
dragging them within the Cyberduck window.

• Not Found — can’t see anything but this short message
PROBLEM: Browser is looking for a folder in your URL that does
not exist.
PROBABLE CAUSE: A typo — check your URL to make sure it
matches your IU username and any folder name.

SOLUTION: Type in the correct URL in the window at the top of the browser.

• Images not appearing
PROBLEM: Even though images worked fine while previewing
before uploading, they do not appear on the published site; instead,
there are only broken link icons and alt ext.

PROBABLE CAUSE: Three possibilities: file name of the image and the file name in the code do not EXACTLY
match, capitalization in the file name, or changed structure in the relative path from the index.html file to the image.
SOLUTION 1: First, verify that the name of your file and the src attribute in your HTML code match EXACTLY. If
the code calls for example.jpg and the file is named example.JPG, change the file name to all lowercase.
SOLUTION 2: If the names do match but you have used either spaces or CAPITAL LETTERS in the file names,
change both the file name and the code to eliminate both. Use only lowercase and no spaces in file names!
SOLUTION 3: Make sure the structure of your project on Pages matches the code. If your code specifies "images/
example.jpg", there MUST be an images folder that includes a file named example.jpg parallel to your index.html file!
Re-upload your images folder to restore the relative path, and your images should display.
NOTE: This third solution would also be the way to correct the fact that your CSS does not show on your site.

HANDOUT VISUAL COMMUNICATION PAGE 9

SUBMITTING THE PROJECT
You will need to publish your website
on Pages AND submit yourproject
folder, as a ZIP file, to Canvas.
1. Once you have finished all your
code and published your site, find
your project folder on your computer
and compress (ZIP) it so that it can be
uploaded to Canvas.
2. Open the Canvas assigment
(Website) and click the “Submit
Assignment” button.

3. Upload your zip folder — make
SURE you are not uploading the
original zipped folder that you
BEGAN working on this week!

4. Click the tab that says “Website
URL” and add in your link here.
You can type it yourself, or open
another tab in your browser, go to
your website, and copy the link from
the URL window, then paste it into
Canvas.
5. Click “Submit Assignment.”

That’s it! You are now officially finished with this project — AND with C226!
There is no requirement for a reflection essay with this assignment.

